organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Shi-Hai Xu,^a* Xiao-Jian Liao,^a Xiang-Chao Zeng,^a Kai Yang,^a Dong-Hong He^a and Kai-Bei Yu^b

^aDepartment of Chemistry, Jinan University, Guangzhou, Guangdong, 510632, People's Republic of China, and ^bChengdu Branch, The Chinese Academy of Sciences, Chengdu 610041, People's Republic of China

Correspondence e-mail: txush@jnu.edu.cn

Key indicators

Single-crystal X-ray study T = 296 KMean σ (C–C) = 0.012 Å Disorder in solvent or counterion R factor = 0.037 wR factor = 0.067 Data-to-parameter ratio = 15.1

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Dibromophakellin methanol hemisolvate

The title compound, $C_{11}H_{11}Br_2N_5O \cdot 0.5CH_3OH$, was isolated from algae (*Laurencia majuscula Lucas*) collected from the South China Sea and its crystal structure was determined. It exhibits mild antibacterial and antineoplastic activity. The crystal structure has supramolecular layers with $N-H \cdots O$ and $N-H \cdots N$ hydrogen bonds. The methanol solvent molecule is threefold disordered.

Comment

Dibromophakellin (m.p. 515 K), (I), a brominated pyrrole alkaloid, was first isolated by Sharma & Burkholder (1971) from the marine Phakellia flabellate off the coast of the Great Barrier Reef in Australia. It has also been prepared by a biomimetic synthesis (Foley & Büchi, 1982). Its structure has been confirmed by X-ray analysis of its acetate (Fedoreyev *et al.*, 1986). Despite the presence of both aminoacetal and diaminoketal functionalities dibromophakellin exhibits considerable stability toward hydrolytic reagents.

HN HN Br (I)

X-ray diffraction analysis reveals that the title compound, (I), as its methanol hemisolvate, has a compact tetracyclic core that includes a pyrrole and a guanidine unit in a fivemembered ring. There are two essentially identical molecules in the asymmetric unit, together with a molecule of methanol disordered over three orientations. Supramolecular layers are stabilized by $N-H\cdots O$ and $N-H\cdots N$ hydrogen bonds (Table 1 and Fig. 2).

Experimental

. .

The chopped algae were extracted with ethanol at room temperature. The extract was subjected to silica-gel column chromatography, eluting with petroleum ether containing an increasing amount of ethyl acetate and then chloroform containing an increasing amount of methanol. The fraction eluted with chloroform–methanol (3:97) gave the title compound after evaporation of the solvent.

Crystal data	
$C_{11}H_{11}Br_2N_5O.0.5CH_4O$	$D_x = 1.864 \text{ Mg m}^{-3}$
$M_r = 405.09$	Mo $K\alpha$ radiation
Monoclinic, P2 ₁	Cell parameters from 38
a = 7.646 (1) Å	reflections
b = 28.050 (6) Å	$\theta = 3.015.3^{\circ}$
c = 7.670(1) Å	$\mu = 5.62 \text{ mm}^{-1}$
$\beta = 118.65 \ (1)^{\circ}$	T = 296 (2) K
$V = 1443.5 (5) \text{ Å}^3$	Irregular, colourless
Z = 4	$0.48 \times 0.30 \times 0.22 \text{ mm}$

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved Received 24 December 2003 Accepted 22 March 2004 Online 17 April 2004

Data collection

Siemens P4 diffractometer ω scans Absorption correction: multi-scan (SHELXTL; Siemens, 1994) $T_{min} = 0.104, T_{max} = 0.290$ 6923 measured reflections 5939 independent reflections 3078 reflections with $I > 2\sigma(I)$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.067$ S = 0.805939 reflections 393 parameters H atoms treated by a mixture of independent and constrained refinement $\begin{aligned} R_{\text{int}} &= 0.037\\ \theta_{\text{max}} &= 26.5^{\circ}\\ h &= -9 \rightarrow 9\\ k &= -35 \rightarrow 35\\ l &= -9 \rightarrow 8\\ 3 \text{ standard reflections}\\ \text{every 97 reflections}\\ \text{intensity decay: 7.6\%} \end{aligned}$

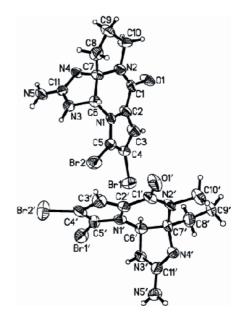
$$\begin{split} &w = 1/[\sigma^2(F_o^2) + (0.023P)^2] \\ &where \ P = (F_o^2 + 2F_c^2)/3 \\ &(\Delta/\sigma)_{\rm max} = 0.001 \\ &\Delta\rho_{\rm max} = 0.29 \ {\rm e} \ {\rm \AA}^{-3} \\ &\Delta\rho_{\rm min} = -0.43 \ {\rm e} \ {\rm \AA}^{-3} \\ &{\rm Absolute \ structure: \ Flack \ (1983);} \\ &2877 \ {\rm Friedel \ pairs} \\ &{\rm Flack \ parameter} = 0.000 \ (11) \end{split}$$

Table 1

Hydrogen-bonding geometry (Å, °).

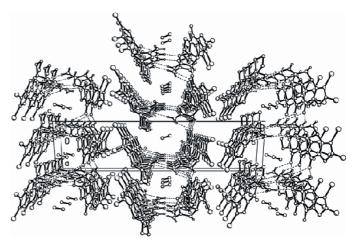
$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N3-H3N···O1 ⁱ	0.856 (10)	2.14 (3)	2.921 (7)	151 (4)
$N5-H5BN\cdotsO1^{i}$	0.86	2.36	3.096 (7)	143
N5−H5AN···N4′ ⁱⁱ	0.86	2.13	2.981 (8)	171
$N3' - H3N' \cdots O1'^{iii}$	0.855 (10)	2.13 (3)	2.833 (7)	139 (5)
$N5' - H5'D \cdots O1'^{iii}$	0.86	2.34	3.062 (7)	142
$N5' - H5'C \cdot \cdot \cdot N4^{iv}$	0.86	2.12	2.961 (7)	167

Symmetry codes: (i) x, y, 1+z; (ii) $1-x, \frac{1}{2}+y, 1-z$; (iii) x-1, y, z; (iv) $1-x, y-\frac{1}{2}, 1-z$.


The methanol solvent molecule is disordered over three orientations on approximately the same site. These orientations were refined with a C–O bond-length restraint of 1.480 (4) Å and riding H atoms (C–H = 0.96 Å and O–H = 0.82 Å). In the molecule of dibromophakellin, H atoms were positioned geometrically and refined as riding, with C–H = 0.93–0.98 Å and N–H = 0.86 Å, except that the H atoms attached to ring N atoms were refined freely. For all constrained H atoms, $U_{iso}(H) = 1.2U_{eq}$ (parent atom).

Data collection: *XSCANS* (Siemens, 1994); cell refinement: *XSCANS*; data reduction: *SHELXTL* (Siemens, 1994); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

This research was funded by the Ministry of Science and Technology of the People's Republic of China 863 program.


References

Fedoreyev, S. A., Utkina, N. K., Ilyin, S. G., Reshetnyak, M. V. & Maximov, O. B. (1986). *Tetrahedron Lett.* 27, 3177–3180.

Figure 1

The two molecules in the asymmetric unit of the title compound, shown with 50% probability ellipsoids. The disordered solvent molecule is not shown.

Figure 2

The packing of the title compound, with hydrogen bonds shown as dashed lines. H atoms of the disordered solvent molecule have been omitted, and only one methanol orientation is shown on each site.

- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Foley, L. H. & Büchi, G. (1982). J. Am. Chem. Soc. 104, 1776-1777.
- Sharma, G. M. & Burkholder, P. R. (1971). J. Chem. Soc. C, pp. 151-152.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Siemens (1994). XSCANS and SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.